DEEP LEARNING

Deep Learning Basics

deeplearning.mit.edu

2019

最专业报告分享群:

•每日分享5+科技行业报告

- 同行业匹配,覆盖人工智能、大数据、机器人、 智慧医疗、智能家居、物联网等行业。
- 高质量用户,同频的人说同样的话

扫描右侧二维码, 或直接搜索关注公众号: 智东西(zhidxcom) 回复"报告群"加入

Deep Learning in One Slide

- What is it: Extract useful patterns from data.
- How: Neural network + optimization
- How (Practical): Python + TensorFlow & friends
- Hard Part: Good Questions + Good Data
- Why now: Data, hardware, community, tools, investment
- Where do we stand? Most big questions of intelligence have not been answered nor properly formulated

Exciting progress:

- Face recognition
- Image classification
- Speech recognition
- Text-to-speech generation
- Handwriting transcription
- Machine translation
- Medical diagnosis
- Cars: drivable area, lane keeping
- Digital assistants
- Ads, search, social recommendations
- Game playing with deep RL

"AI began with an ancient wish to forge the gods."

- Pamela McCorduck, Machines Who Think, 1979

Frankenstein (1818)

Ex Machina (2015)

Visualized here are 3% of the neurons and 0.0001% of the synapses in the brain.

Thalamocortical system visualization via DigiCortex Engine.

History of Deep Learning Ideas and Milestones*

Perspective:

- Universe created 13.8 billion years ago
- Earth created
 4.54 billion years ago
- Modern humans 300,000 years ago
- Civilization 12,000 years ago
- Written record 5,000 years ago

- 1943: Neural networks
- 1957: Perceptron
- 1974-86: Backpropagation, RBM, RNN
- 1989-98: CNN, MNIST, LSTM, Bidirectional RNN
- 2006: "Deep Learning", DBN
- 2009: ImageNet
- 2012: AlexNet, Dropout
- 2014: GANs
- 2014: DeepFace
- 2016: AlphaGo
- 2017: AlphaZero, Capsule Networks
- 2018: BERT

* Dates are for perspective and not as definitive historical record of invention or credit

Figure I ORGANIZATION OF THE MARK I PERCEPTRON

History of DL Tools*

- Mark 1 Perceptron 1960
- Torch 2002
- CUDA 2007
- Theano 2008
- Caffe 2014
- DistBelief 2011
- TensorFlow 0.1 2015
- PyTorch 0.1 2017
- TensorFlow 1.0 2017
- PyTorch 1.0 2017
- TensorFlow 2.0 2019
- * Truncated for clarity over completeness

For the full list of references visit: https://hcai.mit.edu/references

First Steps: Start Simple

Massachusetts Institute of Technology For the full list of https://hcai.mit.

For the full list of references visit: <u>https://hcai.mit.edu/references</u>

https://deeplearning.mit.edu 2019

TensorFlow in One Slide

- What is it: Deep Learning Library (and more)
 - Facts: Open Source, Python, Google
- Community:
 - 117,000+ GitHub stars
 - TensorFlow.org: Blogs, Documentation, DevSummit, YouTube talks

• Ecosystem:

- Keras: high-level API
- TensorFlow.js: in the browser
- TensorFlow Lite: on the phone
- Colaboratory: in the cloud
- TPU: optimized hardware
- TensorBoard: visualization
- TensorFlow Hub: graph modules
- Alternatives: PyTorch, MXNet, CNTK

Extras:

- Swift for TensorFlow
- TensorFlow Serving
- TensorFlow Extended (TFX)
- TensorFlow Probability
- Tensor2Tensor

Deep Learning is **Representation Learning**

(aka Feature Learning)

Representation Matters

Task: Draw a line to separate the green triangles and blue circles.

Deep Learning is **Representation Learning** (aka Feature Learning)

Task: Draw a line to separate the **blue curve** and **red curve**

Representation Matters

Sun-Centered Model (Formalized by Copernicus in 16th century) Earth-Centered Model

"History of science is the history of compression progress." - Jürgen Schmidhuber

Why Deep Learning? Scalable Machine Learning

Massachusetts Institute of Technology

Gartner Hype Cycle

Why Not Deep Learning? Real World Applications

For the full list of references visit: https://hcai.mit.edu/references

Why Not Deep Learning? Unintended Consequences

Human

AI (Deep RL Agent)

Player gets reward based on:

- 1. Finishing time
- 2. Finishing position
- 3. Picking up "turbos"

The Challenge of Deep Learning

- Ask the right question and know what the answer means: image classification ≠ scene understanding
- Select, collect, and organize the right data to train on: photos ≠ synthetic ≠ real-world video frames

Pure Perception is Hard

[66]

Visual Understanding is Harder

Examples of what we can't do well:

- Mirrors
- Sparse information
- 3D Structure
- Physics
- What's on peoples' minds?
- What happens next?
- Humor

Deep Learning:

Our intuition about what's "hard" is flawed (in complicated ways)

Visual perception:540,000,000 years of dataBipedal movement:230,000,000 years of dataAbstract thought:100,000 years of data

Prediction: Dog

+ Distortion

Prediction: Ostrich

"Encoded in the large, highly evolve sensory and motor portions of the human brain is a **billion years of experience** about the nature of the world and how to survive in it.... Abstract thought, though, is a new trick, perhaps less than **100 thousand years** old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it." - Hans Moravec, Mind Children (1988)

Measuring Progress: Einstein vs Savant

Max Tegmark's rising sea visualization of Hans Moravec's landscape of human competence

Massachus Institute of Technology

Special Purpose Intelligence: Estimating Apartment Cost

For the full updated list of references visit:

(Toward) General Purpose Intelligence: Pong to Pixels

Andrej Karpathy. "Deep Reinforcement Learning: Pong from Pixels." 2016.

Policy Network:

- 80x80 image (difference image)
- 2 actions: up or down
- 200,000 Pong games

This is a step towards general purpose artificial intelligence!

Deep Learning from Human and Machine

Data Augmentation

Crop:

Flip:

Scale:

Translation:

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

The Challenge of Deep Learning: Efficient Teaching + Efficient Learning

- Humans can learn from very few examples
- Machines (in most cases) need thousands/millions of examples

Deep Learning: Training and Testing

Training Stage:

Testing Stage:

How Neural Networks Learn: Backpropagation

Forward Pass:

Backward Pass (aka Backpropagation):

Adjust to Reduce Error

Regression vs Classification

Regression

What is the temperature going to be tomorrow?

Multi-Class vs Multi-Label

What can we do with Deep Learning?

For the full list of references visit: nstitute of https://hcai.mit.edu/references

echnology

https://deeplearning.mit.edu 2019

Neuron: Biological Inspiration for Computation

Biological and Artificial Neural Networks

Human Brain

- Thalamocortical system: 3 million neurons 476 million synapses
- Full brain: ۲ 100 billion neurons 1,000 trillion synapses

Artificial Neural Network

ResNet-152: • 60 million synapses

Human brains have ~10,000,000 times synapses than artificial neural networks.

Neuron: Biological Inspiration for Computation

• **Neuron:** computational building block for the brain

 (Artificial) Neuron: computational building block for the "neural network"

Key Difference:

- Parameters: Human brains have ~10,000,000 times synapses than artificial neural networks.
- Topology: Human brains have no "layers". Async: The human brain works asynchronously, ANNs work synchronously.
- Learning algorithm: ANNs use gradient descent for learning. We don't know what human brains use
- Power consumption: Biological neural networks use very little power compared to artificial networks
- **Stages:** Biological networks usually never stop learning. ANNs first train then test.

Neuron: Forward Pass

For the full updated list of references visit:

Combing Neurons in Hidden Layers: The "Emergent" Power to Approximate

Universality: For any arbitrary function f(x), there exists a neural network that closely approximate it for any input x

[62]

Neural Networks are Parallelizable

For the full list of references visit: [273] https://hcai.mit.edu/references

assachusetts

Institute of

Fechnology

Compute Hardware

- **CPU** serial, general purpose, everyone has one
- **GPU** parallelizable, still general purpose
- **TPU** custom ASIC (Application-Specific Integrated Circuit) by Google, specialized for machine learning, low precision

Key Concepts: Activation Functions

Sigmoid

- Vanishing gradients
- Not zero centered

Tanh

• Vanishing gradients

For the full list of references visit:

https://hcai.mit.edu/references

[148]

/lassachusetts

Institute of

Technology

ReLU

• Not zero centered

Loss Functions

Mean Squared Error

- Loss function quantifies gap between prediction and ground truth
- For regression:
 - Mean Squared Error (MSE)
- For classification:
 - Cross Entropy Loss

Cross Entropy Loss

Task: Update the weights and biases to decrease loss function

Subtasks:

- 1. Forward pass to compute network output and "error"
- 2. Backward pass to compute gradients
- 3. A fraction of the weight's gradient is subtracted from the weight.

Learning Rate

Numerical Method: Automatic Differentiation

Learning is an Optimization Problem

Task: Update the weights and biases to decrease loss function

SGD: Stochastic Gradient Descent

References: [103]

Dying ReLUs

Vanishing Gradients:

 $rac{d\sigma(x)}{dx} = \left(1 - \sigma(x)
ight)\sigma(x)$

- If a neuron is initialized poorly, it might not fire for entire training dataset.
- Large parts of your network could be dead ReLUs!

Partial derivatives are small = Learning is slow

Vanilla SGD gets your there, but can be slow

Mini-Batch Size

Mini-Batch size: Number of training instances the network evaluates per weight update step.

- Larger batch size = more computational speed
- Smaller batch size = (empirically) better generalization

"Training with large minibatches is bad for your health. More importantly, it's bad for your test error. Friends don't let friends use minibatches larger than 32." - Yann LeCun

Revisiting Small Batch Training for Deep Neural Networks (2018)

Overfitting and Regularization

- Help the network generalize to data it hasn't seen.
- Big problem for small datasets.
- Overfitting example (a sine curve vs 9-degree polynomial):

Massachuse Institute of Technology

Overfitting and Regularization

• Overfitting: The error decreases in the training set but increases in the test set.

Massachus Institute of Technology

For the full updated list of references visit: [24, 20, 140] https://selfdrivingcars.mit.edu/references

Regularization: Early Stoppage

Model Complexity

- Create "validation" set (subset of the training set).
 - Validation set is assumed to be a representative of the testing set.
- Early stoppage: Stop training (or at least save a checkpoint) when performance on the validation set decreases

Regularization: Dropout

- **Dropout:** Randomly remove some nodes in the network (along with incoming and outgoing edges)
- Notes:
 - Usually p >= 0.5 (p is probability of keeping node)
 - Input layers *p* should be much higher (and use noise instead of dropout)
 - Most deep learning frameworks come with a dropout layer

Regularization: Weight Penalty (aka Weight Decay)

- L2 Penalty: Penalize squared weights. Result:
 - Keeps weight small unless error derivative is very large.
 - Prevent from fitting sampling error.
 - Smoother model (output changes slower as the input change).
 - If network has two similar inputs, it prefers to put half the weight on each rather than all the weight on one.
- L1 Penalty: Penalize absolute weights. Result:
 - Allow for a few weights to remain large.

Normalization

- Network Input Normalization
 - *Example:* Pixel to [0, 1] or [-1, 1] or according to mean and std.
- Batch Normalization (BatchNorm, BN)
 - Normalize hidden layer inputs to mini-batch mean & variance
 - Reduces impact of earlier layers on later layers
- Batch Renormalization (BatchRenorm, BR)
 - Fixes difference b/w training and inference by keeping a moving average asymptotically approaching a global normalization.
- Other options:
 - Layer normalization (LN) conceived for RNNs
 - Instance normalization (IN) conceived for Style Transfer
 - Group normalization (GN) conceived for CNNs

Neural Network Playground

http://playground.tensorflow.org

Massachusetts Institute of Technology

For the full updated list of references visit:

Convolutional Neural Networks: Image Classification

 Convolutional filters: take advantage of spatial invariance

- AlexNet (2012): First CNN (15.4%) ٠
 - 8 layers ٠
 - 61 million parameters ٠

ZFNet (2013): 15.4% to 11.2% ٠

- 8 layers ٠
- More filters. Denser stride.

VGGNet (2014): 11.2% to 7.3%

- Beautifully uniform: ٠ 3x3 conv, stride 1, pad 1, 2x2 max pool
- 16 layers ٠
- 138 million parameters ٠

GoogLeNet (2014): 11.2% to 6.7% ٠

- Inception modules
- 22 layers •
- 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance •
 - 152 layers ٠
- CUImage (2016): 3.57% to 2.99% ٠
 - Ensemble of 6 models ٠
- SENet (2017): 2.99% to 2.251% ٠
 - Squeeze and excitation block: network ٠ is allowed to adaptively adjust the weighting of each feature map in the convolutional block.

Institute of **Fechnology**

Object Detection / Localization

Region-Based Methods | Shown: Faster R-CNN

ROIs = region_proposal(image)
for ROI in ROIs
 patch = get_patch(image, ROI)
 results = detector(patch)

Object Detection / Localization Single-Shot Methods | Shown: SSD

Semantic Segmentation

Hybrid Dilated Conv. (HDC)

Transfer Learning

- Fine-tune a pre-trained model
- Effective in many applications: computer vision, audio, speech, natural language processing

Autoencoders

http://projector.tensorflow.org/

Generative Adversarial Network (GANs)

Generative Adversarial Networks (GANs) are a way to make a generative model by having two neural networks compete with each other.

The **discriminator** tries to distinguish genuine data from forgeries created by the generator.

Progressive GAN 10/2017 1024 x 1024

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

^{s visit:} [302, 303, 304]

https://deeplearning.mit.edu 2019

Word Embeddings (Word2Vec)

Skip Gram Model:

(fox, jumps) (fox, over)

Massachusetts Institute of Technology

The

The

The

The

quick

quick brown

brown

fox

Recurrent Neural Networks

- Applications
 - Sequence Data
 - Text
 - Speech
 - Audio
 - Video
 - Generation

Long-Term Dependency

- Short-term dependence:
 Bob is eating an apple.

In theory, vanilla RNNs can handle arbitrarily long-term dependence.

In practice, it's difficult.

Long Short-Term Memory (LSTM) Networks: Pick What to Forget and What To Remember

Conveyer belt for **previous state** and **new data**:

- 1. Decide what to forget (state)
- 2. Decide what to remember (state)
- 3. Decide what to output (if anything)

Bidirectional RNN

• Learn representations from both previous time steps and future time steps

Encoder-Decoder Architecture

Encoder RNN encodes input sequence into a fixed size vector, and then is passed repeatedly to decoder RNN.

Attention

Attention mechanism allows the network to refer back to the input sequence, instead of forcing it to encode all information into one fixed-length vector.

AutoML and Neural Architecture Search (NASNet)

For the full updated list of references visit: [300, 301]

Deep Reinforcement Learning

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

Toward Artificial General Intelligence

- Transfer Learning
- Hyperparameter Optimization
- Architecture Search
- Meta Learning

https://deeplearning.mit.edu 2019

Thank You

Website: deeplearning.mit.edu

- Videos and slides will be posted online
- Code will be posted on GitHub