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Deep Learning in One Slide

 What s it:
Extract useful patterns from data.

* How:
Neural network + optimization

* How (Practical):
Python + TensorFlow & friends

e Hard Part:
Good Questions + Good Data

* Why now:
Data, hardware, community, tools,
investment

* Where do we stand?
Most big questions of intelligence
have not been answered nor
properly formulated

Exciting progress:

Face recognition

Image classification

Speech recognition

Text-to-speech generation
Handwriting transcription

Machine translation

Medical diagnosis

Cars: drivable area, lane keeping
Digital assistants

Ads, search, social recommendations

Game playing with deep RL
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“Al began with an ancient wish to forge the gods.”
- Pamela McCorduck, Machines Who Think, 1979

Frankenstein (1818)

Ex Machina (2015)

Visualized here are 3% of the neurons and 0.0001% of the synapses in the brain.

Thalamocortical system visualization via DigiCortex Engine.
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History of Deep Learning Ideas and Milestones*

We are here

A

Perspective:

e Universe created
13.8 billion years ago

e Earth created
4.54 billion years ago

* Modern humans
300,000 years ago
* Civilization
12,000 years ago

* Written record
5,000 years ago

* 1943: Neural networks

* 1957: Perceptron

* 1974-86: Backpropagation, RBM, RNN
* 1989-98: CNN, MNIST, LSTM, Bidirectional RNN
e 2006: “Deep Learning”, DBN

* 2009: ImageNet

e 2012: AlexNet, Dropout

e 2014: GANs

* 2014: DeepFace

e 2016: AlphaGo

e 2017: AlphaZero, Capsule Networks

e 2018: BERT

* Dates are for perspective and not as definitive historical
record of invention or credit
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History of DL Tools*

Mark 1 Perceptron — 1960
Torch — 2002

CUDA - 2007

Theano — 2008

Caffe — 2014
DistBelief — 2011
TensorFlow 0.1 — 2015
PyTorch 0.1 — 2017
TensorFlow 1.0 — 2017
PyTorch 1.0 - 2017
TensorFlow 2.0 — 2019

* Truncated for clarity over completeness
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Input Image:

TensorFlow
Model:

Output:

First Steps: Start Simple

“Everything should be made
as simple as possible.
But not simpler.”

Albert Einstein

Neural
Network

}
5

(with 87% confidence)

tensorflow tf
tensorflow keras

(train_images, train_labels), (test_images, test_labels)
keras.datasets.mnist.load_data()

model keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)

D)

model.compile(optimizer=tf.train.AdamOptimizer(),

Loss="'sparse_categorical_ crossentropy’,
metrics=["accuracy'])

model.fit(train_images, train_labels, epochs=5)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print('test accuracy:', test_acc)

predictions

model.predict(test_images)
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Tensor

TensorFlow in One Slide

* What is it: Deep Learning Library
* Facts: Open Source, Python, Google

 Community:
e 117,000+ GitHub stars
* TensorFlow.org: Blogs, Documentation, DevSummit, YouTube talks

* Ecosystem: Extras:
* Keras: high-level AP * Swift for TensorFlow
e TensorFlow.js: in the browser
* TensorFlow Lite: on the phone
* Colaboratory: in the cloud
* TPU: optimized hardware
* TensorBoard: visualization
e TensorFlow Hub: graph modules

* Alternatives: PyTorch, MXNet, CNTK

TensorFlow Serving
TensorFlow Extended (TFX)

TensorFlow Probability

Tensor2Tensor

IIIiI- m:fifjf:g?e‘*s For the full list of references visit: https//deeplearnlngmltedu 2019

Technology https://hcai.mit.edu/references



https://deeplearning.mit.edu/
https://hcai.mit.edu/references

Deep Learning is Representation Learning

(aka Feature Learning)

Output
(object identity)

3rd hidden layer

(object parts)

Representation
Learning

2nd hidden layer
(corners and
contours)

Machine
Learning

1st hidden layer
(edges)

Visible layer

Artificial
Intelligence

(input pixels)

amm M husetis ) o
I II II In:;:::e :':e For the full updated list of references visit: [20]

Technology

https://deeplearning.mit.edu 2019



https://deeplearning.mit.edu/
https://selfdrivingcars.mit.edu/references

Representation Matters

Cartesian coordinates Polar coordinates
VVV‘
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V?V

Task: Draw a line to separate the green triangles and blue circles.
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Deep Learning is Representation Learning

(aka Feature Learning)

Task: Draw a line to separate the blue curve and red curve
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Representation Matters

Heliocentrism Geocentrism

Sun-Centered Model Earth-Centered Model

(Formalized by Copernicus in 16t century)

“History of science is the history of compression progress.”
- Jirgen Schmidhuber

For the full updated list of references visit: [20]
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Why Deep Learning? Scalable Machine Learning

Machine Learning

&k 77—l

Input Feature extraction Classification Output

Deep Learning

& — 7t — [

Input Feature extraction + Classification Output
A Deep
Learning
(]
(&
-
@©
= .
= Most Learning
L Algorithms
)
o

>

Amount of Data
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Gartner Hype Cycle

AVISIBILITY

Deep Learning Peak of Inflated Expectations

Self-Driving Cars

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger TIME
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Why Not Deep Learning? Real World Applications
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Why Not Deep Learning? Unintended Consequences

Al (Deep RL Agent)

Human

b A
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Player gets reward based on:
1. Finishing time

2. Finishing position

3. Picking up “turbos”
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The Challenge of Deep Learning

* Ask the right question and know what the answer means:
image classification # scene understanding

» Select, collect, and organize the right data to train on:
photos # synthetic # real-world video frames
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Pure Perception is Hard
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Visual Understanding is Harder

Examples of what we can’t do well:

e Mirrors

Sparse information
3D Structure
* Physics

* What’s on
peoples’ minds?

 What happens next?
* Humor

P imiies™  forine bl of eferences vt [211] https://deeplearning.mitedu 2019
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Deep Learning:

Our intuition about what’s “hard” is flawed (in complicated ways)
Visual perception: 540,000,000 years of data
Bipedal movement: 230,000,000 years of data
Abstract thought: 100,000 years of data

.

Prediction: Dog + Distortion Prediction: Ostrich

“Encoded in the large, highly evolve sensory and motor portions of the human brain is a billion
years of experience about the nature of the world and how to survive in it.... Abstract thought,
though, is a new trick, perhaps less than 100 thousand years old. We have not yet mastered it. It
is not all that intrinsically difficult; it just seems so when we do it.”

- Hans Moravec, Mind Children (1988)
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Measuring Progress: Einstein vs Savant

Max Tegmark’s rising sea visualization of
Hans Moravec’s landscape of human competence
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Special Purpose Intelligence:

Estimating Apartment Cost

Rooms:
$3235- | 51985+
$2835+ 1 $1935+
$2670+  $1895+
$2515- | 51860+
$2380+ | $1815+
$2270+ W $1745+
$2175+ W $1670+
$2100+ W $1585+
|| 2045+ [ 51585-
n=11478

[x]2017-12-18[>]

| mainsite  details

Bedrooms
Win(hr_zé
@ ]
Sq. Feet
loston Logan
ternational
Airport
Neighborhood
(mapped to

an id number)
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(Toward) General Purpose Intelligence:

Pong to Pixels

Policy Network:

raw pixels hidden layer

* 80x80 image (difference image)
e 2 actions: up or down
* 200,000 Pong games

This is a step towards general purpose
artificial intelligence!

Andrej Karpathy. “Deep Reinforcement
Learning: Pong from Pixels.” 2016.
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Deep Learning from Human and Machine

“Teachers” “Students”

Supervised

Human — .
Learning

Augmented
Supervised
Learning

Human

|

Machine

Semi-
Supervised
Learning

Human

|

Machine

Human

Reinforcement
Learning

|

Machine

Unsupervised
Learning

Machine —
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Data Augmentation
Crop: Flip:

H‘

Rotate:

Translation:
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The Challenge of Deep Learning:
Efficient Teaching + Efficient Learning

 Humans can learn from very few examples

* Machines (in most cases) need thousands/millions of examples

i | i
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Deep Learning: Training and Testing

Training Stage:

Input Learning Correct
Data System Output
(aka “Ground Truth”)
Testing Stage:
New Input Learnin : i
P r— 5 )  Best Guess !
Data System : !
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How Neural Networks Learn: Backpropagation

Forward Pass:

Input Neural .
P fr— ) Prediction

Data Network

Backward Pass (aka Backpropagation):

Neural Measure
_

Network of Error

Adjust to Reduce Error
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Regression vs Classification

Regression
What is the temperature going to

be tomorrow?

7773

PREDICTION

84°

T T T T Y T T T T T Y v T T T T T J
60 0 80 90 100 110 120 130 140 150 160 170 180 150 20 210 220 20

Fahrenheit RS RSNy e
10 0 10 2 30 40 5

reeerey
°F % 40 30 N

Classification
Will it be Cold or Hot tomorrow?

PREDICTION

|||||||||||||||||||||||||||||

Fahrenheit l
°F & <40 90 0 0 0 10 20 30 40 % 60 0 80 90 00 110 120 130 40 150 150 170 180 190 20 210 220 20
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Multi-Class vs Multi-Label

Multi-Class

Multi-Label

Samples

A
y Oy ol [3E (

( Labels (1)
O [001] [100] [010]

Samples

Sl | | IS0

Labels (t)

101 [010] [111]
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What can we do with Deep Learning?

Input Learning Correct
Data System Output
* Number * Number

Vector of numbers
Sequence of numbers
Sequence of vectors of numbers

Vector of numbers
Sequence of numbers
Sequence of vectors of numbers

one to one one to many many to one many to many many to many

I BB Massachusetts
II Institute of
Tech

e
nology
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Neuron: Biological Inspiration for Computation

L0 }zﬂ (Artificial) Neuron: computational building
& synapse
axon from a neuron . 2P block for the “neural network”
W0
cell body f (Z w;T; + b)
S w4 |flo—
i : o output axon
activation
Wy Ly function
impulzes Tlat;ri?:ld Neuron: computational building
toward cell body :
S— block for the brain

dendrites of axon

axon

nucleus terminals

impulses carried

away from cell body
cell body
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Biological and Artificial Neural Networks

Human Brain

e Thalamocortical system:
3 million neurons
476 million synapses

e Full brain:
100 billion neurons
1,000 trillion synapses

Artificial Neural Network

* ResNet-152:
60 million synapses

Human brains have ~10,000,000 times synapses
than artificial neural networks.
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Neuron: Biological Inspiration for Computation

impulses carried Key Difference:

B Mo * Parameters: Human brains have
~10,000,000 times synapses than
artificial neural networks.

* Topology: Human brains have no
“layers”. Async: The human brain works

* Neuron: computational asynchronously, ANNs work
building block for the brain synchronously.

* Learning algorithm: ANNSs use gradient
descent for learning. We don’t know

% what human brains use

* Power consumption: Biological neural
e networks use very little power
N compared to artificial networks
* Stages: Biological networks usually

never stop learning. ANNs first train
* (Artificial) Neuron: computational then test.

building block for the “neural network”

branches
of axon

dendrites

P ;:‘ axon

nucleus terminals

impulses carried

* away from cell body
cell body

Zo wo

—».
axon from a neuron

cell body

Zwizi +b

BB Massachusetts
I I Institute of
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Neuron: Forward Pass

1. weigh 2.sumup 3. activate
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Combing Neurons in Hidden Layers:
The “Emergent” Power to Approximate

Simple Neural Network Deep Learning Neural Network
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Universality: For any arbitrary function f(x), there exists a neural
network that closely approximate it for any input x
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Neural Networks are Parallelizable
y Step 1 Step 4
Ly Y1) = fw, x, + WX, + w .x,)
X2 4
: (ya activation function
X3
input neurons
Step 2 Step 5
X1 Wi
[y y1 ) = f(w x, + w,x, + w.x.)
X2 Wiz
Wi3 y2 ) = f(wg_x_ WX, t W:zzxz)
X3
weights
Step 3 Animated
X1
Y1) = WX, + WX, + WX, g
X2
{ y2
X3
input neurons
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Compute Hardware

* CPU - serial, general purpose, everyone has one
* GPU — parallelizable, still general purpose

* TPU — custom ASIC (Application-Specific Integrated Circuit) by
Google, specialized for machine learning, low precision

mmm  Massachuse or the full list of references visit: i I
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Key Concepts:

Activation Functions

Sigmoid Activation Function

Derivative of Sigmoid Activation Function

Sigmoid
08 020
* Vanishing gradients
S
> o4 2 oo 0lx) = 0(x)(1 = ox)
* Not zero centered
02 005
00 0.00
-100 -75 -50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100
X Axis X Axis
Al L Derivative of Tanh Activation Function
100 10
Tanh
050 08
025
£ 0.00 06 ° V . h- d-
io anishing gradients
-025 =
04
-0.50
-0.75 02
-1.00
-100 -75 -50 -25 00 25 50 75 100 LN S — — T e ——
X Axis -100 -75 -50 -25 00 25 50 75 100
X Axis
RelU Activation Function Derivative of ReLU Activation Function
10 10
8 08 RELU
w 6 . 06
2, : * Not zero centered
04
2
max(0,x) 02
0
-100 -75 -50 -25 00 25 50 75 100 00

X Axis

—16.0 —7'.5 —5‘,0 —2’.5 0‘0 2,'5 5‘0 7,'5 10‘,0
X Axis
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Regression
What is the temperature going to

be tomorrow?
V///4

PPPPPPPPPP

Classification
Will it be Cold or Hot tomorrow?

\\\\\\\\\\

0 D W 0 10 B0 0 % 60 M K 9 100110 120 10 4O 150 180 10 180 190

Mean Squared Error

1
MSE == (

Ground Truth

Prediction

tz’ — Sr,;)2

Loss Functions

* Loss function quantifies gap between
prediction and ground truth

* For regression:
* Mean Squared Error (MSE)

e For classification:
* Cross Entropy Loss

Cross Entropy Loss

Classes Prediction

~

C
CE = — Ztilog(si)
i\

Ground Truth {0,1}

\
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Backpropagation T

(compute gradient) 53 =a® —y

- =
SNt D \@”
\ O N A -
Input ) output v <= targe
Input x Q» Q\ output ¥ P Q/ S \\5ty target y
O) "

—~
O —- v -~ i 7 ) ()y(z“))

(2) = (2) (3)
6@ = (Ww@)' s PP

(error term of the hidden layer)

(error term of the output layer)

Task: Update the weights and biases to decrease loss function

Subtasks:
1. Forward pass to compute network output and “error”
2. Backward pass to compute gradients

3. A fraction of the weight’s gradient is subtracted from the weight.

1

Learning Rate Numerical Method: Automatic Differentiation

-|—g
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Learning is an Optimization Problem

Task: Update the weights and biases to decrease loss function

SGD: Stochastic Gradient Descent

il mwes™  References: [103] https://deeplearning.mit.edu 2019
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Dying RelLUs Vanishing Gradients:
ReLU function derivative of ReLU sigmoid function derivative of sigmoid
.O~‘ ; : I< 1,0»' : I—-I '< 1.0—I : : ' '— 1.0—l : : :
°r 1T toriva ‘ ] e 1 I derivative is zero at tails
. o6 . derivative exaqtly zero here 061 ] 061 : :
K 0.4 04} . 0.4}
2 0.2 0.2 } 0.2} VAP .
0 0.0 0.0 - 0.0} y
-10 -5 0 5 10 -10 -5 (‘) f; 1‘0 —iO —I5 “) ; 1‘0 _'10 —‘5 (; .‘; 1:)
o T : do(z)
* If a neuron is initialized poorly, it might not fire for ———~ =(1—-o0(x))o(x)
entire training dataset. dx
* Large parts of your network could be dead ReLUs! Partial derivatives are small = Learning is slow

- Momentum =
//,,, NAG - Momentum
ity i
V0 R — nNAG
4 Z
sy & 9l
4 7 'é:,:,’," ':,',"I"',',"l:l,"‘,'l'/,""l;,',"l,‘ Rmsprop Adadelta
<SR - -
G TR Rmspro
SN
OSIINININY
v
-4

1.0

Hard to break symmetry Vanilla SGD gets your there, but can be slow

I I I Hmm Massachusetts
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Mini-Batch Size

@
L L N

We cannot pass the entire If we have 10,000 images
An Epoch represents one dataset into the neural as data and a batch size of
iteration over the entire network at once. So, we 200, then an epoch should
dataset. divide the dataset into contain 10,000/200 = 50
number of batches. iterations.

Mini-Batch size: Number of training instances the network
evaluates per weight update step.

e Larger batch size = more computational speed

* Smaller batch size = (empirically) better generalization

“Training with large minibatches is bad for your health. More importantly, it's
bad for your test error. Friends don’t let friends use minibatches larger than 32.”

- Yann LeCun
Revisiting Small Batch Training for Deep Neural Networks (2018)
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Overfitting and Regularization

* Help the network generalize to data it hasn’t seen.
* Big problem for small datasets.

e Overfitting example (a sine curve vs 9-degree polynomial):

'_7
1 M=9
t o
%
of .
>
-1t
, | |
0 1

T
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Overfitting and Regularization

e Overfitting: The error decreases in the training set but
increases in the test set.

Erms

—©— Training
—O— Test

057

0 3

M husetts i isit:
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Regularization: Early Stoppage

A High Bias High Variance
Dataset D
A~
-~ N
1
o
=
w . .
Validation Error
— A J \ J
I Y Y
Training Validation Test
Set Set Set S
] -

Model Complexity

e Create “validation” set (subset of the training set).
* Validation set is assumed to be a representative of the testing set.

* Early stoppage: Stop training (or at least save a checkpoint)
when performance on the validation set decreases

assachusetts For the full updated list of references visit: [20 140]
’
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Regularization: Dropout

p=0.5

ié%ﬁ%

=S
Training time

* Dropout: Randomly remove some nodes in the network (along

with incoming and outgoing edges)

.
-

* Notes:
e Usually p>=0.5 (pis probability of keeping node)
* Input layers p should be much higher (and use noise instead of dropout)
* Most deep learning frameworks come with a dropout layer
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Regularization: Weight Penalty (aka Weight Decay)

* L2 Penalty: Penalize squared weights. Result:
* Keeps weight small unless error derivative is

W 0 very large.
* Prevent from fitting sampling error.
Q * Smoother model (output changes slower as

the input change).

* If network has two similar inputs, it prefers to
put half the weight on each rather than all the
weight on one.

w/2 w/2
* L1 Penalty: Penalize absolute weights. Result:

* Allow for a few weights to remain large.

IIIII I ttt 1“5 For the full updated list of references visit: [20’ 140, 147] https//deeplearnlngmltedu 2019
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Normalization

* Network Input Normalization
 Example: Pixel to [0, 1] or [-1, 1] or according to mean and std.

* Batch Normalization (BatchNorm, BN)

* Normalize hidden layer inputs to mini-batch mean & variance
* Reduces impact of earlier layers on later layers

e Batch Renormalization (BatchRenorm, BR)

 Fixes difference b/w training and inference by keeping a moving
average asymptotically approaching a global normalization.

e Other options:
Layer normalization (LN) — conceived for RNNs
Instance normalization (IN) — conceived for Style Transfer
* Group normalization (GN) — conceived for CNNs

=
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4

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%
—e

Noise: 0
®

Batch size: 10
—e

REGENERATE

Neural Network Playground

http://playground.tensorflow.org

Epoch Learning rate Activation

000,000 0.03 - Tanmh - None

Regularization

FEATURES + — 2 HIDDEN LAYERS

Which properties
do you want to

feed in? +) = = &
4 neurons 2 neurons

<[ »
- [ »

" The outputs are
mixed with varying
weights, shown
by the thickness of

the lines

Doen

* This is the output
from one neuron
Hover to see it
larger.

Regularization rate Problem type

0 - Classification -

OUTPUT

Test loss 0.489
Training loss 0.498

s s w
.
LN .
DATL XL
. e S * .
Sl 2/ -0
S moe, 5 ae
e
- o® .
% o
~ . o*
= L
AP .
% o . o e
: > 2
. .o
o Q" Ve
B - o
.
I
o

Colors shows
E -
data, neuronand ! |

/ A1 0 1
weight values

[] Show testdata [] Discretize output
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Convolutional Neural Networks:
Image Classification

(\ vy IN,‘# ;\
VX

A\
¢ aat
/ . 2 >
-

i}

What the computer sees

. 82% cat

>

: i 15% dog
image classification 2% hat

1% mug

* Convolutional filters:
take advantage of
spatial invariance

‘ hiput
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« AlexNet (2012): First CNN (15.4%)
* 8layers

* 61 million parameters

* ZFNet (2013): 15.4% to 11.2%

* 8layers
0.3 * More filters. Denser stride.
0.25 0.28 * VGGNet (2014): 11.2% to 7.3%
. . * Beautifully uniform:
g 0.2 3x3 cony, stride 1, pad 1, 2x2 max pool
ch * 16 layers
) -
-g 0.15 * 138 million parameters
E‘g 0.1 * GoogleNet (2014): 11.2% to 6.7%
a 16.7% 1 23.3% )
© I 7 * Inception modules
O 005 v v

* 22 layers

0 W 0.023 * 5 million parameters

2010 2011 2012 2013 2014 2015 2016 2017 (throw away fully connected layers)
T « ResNet (2015): 6.7% to 3.57%
* More layers = better performance
Human error (5.1%) . 152 layers

surpassed in 2015 CUImage (2016): 3.57% to 2.99%

e  Ensemble of 6 models

* SENet (2017): 2.99% to 2.251%

* Squeeze and excitation block: network
is allowed to adaptively adjust the
weighting of each feature map in the
convolutional block.

I I I Hmm Massachusetts
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Object Detection / Localization
Region-Based Methods | Shown: Faster R-CNN

region , . classes

proposal regions e —)’ (softmax)
S I I O

. FC
................... pooling|——>1 . ers

image > CNN feature maps— >
ereeresreresnaes : FC : boundary boxé

}5 regressor

ROIs = region_proposal(image)
ROI ROIs

~n

PEIson car - 0 723 784

patch = get patch(image, ROI)
results = detector(patch)

= I
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Object Detection / Localization
Single-Shot Methods | Shown: SSD

s > conv.
( @ : classes 3
( : : boundary boxes :
mmm  Massachusetts  [orthe full list of references visit: . . .
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Semantic Segmentation

Hybrid Dilated Conv. (HDC)

'
= EE Ez,- £
N BN
r=1 r=2 r=3
\\
ResNetH HDC ]—» HDC (=
_____________________________________________________________ ,
|
Encoding ) |
|

Dense Upsampling Conv. (DUC)

I mmm  Massachusetts  [orthe full list of references visit:
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Transfer Learning

loss
) Shallow classifier (e.g. SVM)

softmax
[ features
fc2
- | < ] 1 - fc1

conv3 conv3
conv2 TRANSFER conv2
conv1 convi

{

Target data and labels

Data and labels (e.g. ImageNet)

* Fine-tune a pre-trained model

 Effective in many applications: computer vision, audio, speech,
natural language processing
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Autoencoders

Original Input Latent Representation Reconstructed Output

.—> Encoder — — Decoder
X

h

3
5 9
i T A
. . "I.‘"' ':111_',_;[",",',' l; /'zaf}m;' ‘;, 4 : "
* Unsupervised learning e !
. . ' ":l_'f' '."""l';ll .‘IV'I:I :llJ“‘_‘_". ‘1 '
* Gives embedding A
!

| .
. 0l s

! 1
1 | 1l o=
ety |,ri!-‘;.gf 3 A
lll I’ Vit e i 2 L5 1‘

* Typically better embeddings . By

,
’ 4.“
. . . . Ao
come from discriminative task g Y
.?:,"7?,“;.’;“ 4 1‘1| \] 1'3 ;" g
’;-,:"1'.;{. - ‘,'1':","’.,”.‘1‘11!;? :‘:’7 1@2. a
vy Yyt AT e '
i P o, BT,
3 g VI g
i X, v
T Gy,
2 o 7 _;7 77‘l T 17
]

http://projector.tensorflow.org/
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Generative Adversarial Network (GANSs)

Generative Adversarial Networks (GANs) are a way to

make a generative model by having two neural networks
compete with each other.

fak

The discriminator tries to
distinguish genuine data
from forgeries created by
the generator.

(Xreal data) [ X fake

[

The generator turns Progressive GAN

5 % 10/2017
random noise into 1024'x 1024
- immitations of the data,
in an attempt to fool the
discriminator.
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Word Embeddings o ot
(Word2Vec) v e oo

Probability that the word at a
> randomly chosen, nearby
position is “abandon”

o 7 y
0 /// —> .. “ability”
CI
o
0 >
‘1" in the position T \ ——> .."“able”
:I:\orlrespt)hnd:)ng tto the —» \
word “ants” l \\
I I
o]
10,000
positions
. 300 neurons > .. "“zone”
Skip Gram Model:
10,000
Training
Source Text samples Word Vector

-quick brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The-brown fox|jumps over the lazy dog. == (quick, the)
(quick, brown)

(quick, fox)

The quick-fox jumps|over the lazy dog. == (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The|quick brown-jumps over |the lazy dog. = (fox, quick)
(fox, brown)

(fox, jumps)

(fox, over)

mmm M husetts ; it
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Recurrent Neural Networks

e Applications
* Sequence Data
* Text
Speech
Audio
Video
Generation

01 02
l l
l l
What time it ?

0000

I mmm  Massachusetts  [orthe full list of references visit:
II Institute of o [299]
Technology https://hcai.mit.edu/references

https://deeplearning.mit.edu 2019



https://deeplearning.mit.edu/
https://hcai.mit.edu/references

Long-Term Dependency

AR
;

I
A

.
L

v

v

.
L

$é>é>

e Short-term dependence:

Bob is eating an apple.
Context =———> + Long-term dependence:

Bob likes apples. He is hungry and decided to
have a snack. So now he is eating an apple.

In theory, vanilla RNNs
can handle arbitrarily
long-term dependence.

A
g) é é In practice, it’s difficult.

v

v
>
v
>

v
v
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Long Short-Term Memory (LSTM) Networks:
Pick What to Forget and What To Remember

T A
L
X O, = >
A ﬁ; 21 A
| 4k
&) ) &)

Conveyer belt for previous state and new data:
1. Decide what to forget (state)

2. Decide what to remember (state)

3. Decide what to output (if anything)
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Bidirectional RNN

LA S S

kA’< A' < A' < A
‘—»A 2> A—4> A ‘»A_‘—M:)

(X

f

e Learn representations from both previous time
steps and future time steps
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Encoder-Decoder Architecture

"Ich's "laufe" « <DONE>

A - A - A

DECODER

ENCODER Lrp—ﬂf—»’—»

(] (] ' (]
) ] ] . (]
e "am" "walking" <DONE>

Encoder RNN encodes input sequence into a fixed size vector,
and then is passed repeatedly to decoder RNN.
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Attention

| l | l ! l |

Encoder € |/ € |/ €2 |/ e3 |/| €4 |—/| es |—/>| es
Decoder do E— ds S d> D ds
l | l l

Attention mechanism allows the network to refer back to the
input sequence, instead of forcing it to encode all information
into one fixed-length vector.
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AutoML

Neural Architecture Search (NASNet)

85 7

NASNet-A (6 @ 4032)

NASNet-A (7 @ 1920,
n- e S “bpN-131 SEN!
Sample architecture A — 80 1 nasNetA (5 @ 153,&#' "'i}i_'éeprion-FiesNet-vz PolyNet = ResNext-101
with probability p @) R Inception-v4
- . Xception ResNet-152
8 i Incéption-v3
\ 4 o P
Train a child network © 754 g Inception-v2
with architecture A to RS :
The controller (RNN) - iNASNet-A (4 @ 1056)
convergence to get o VGG-16
validation accuracy R s i ShuffleNet [
3 @ WobileNet
A g 701 '@ Inception-v1
Scale gradient of p by R
to update the controller
65 1— T T T T T T T T
0 10000 20000 30000 40000
# Mult-Add operations (millions)
R 1
3 - ) ) new hidden layer'
£ g{ Select one Select second Select operation for Select operation for Select method to i 1
53 N hidden state hidden state [ first hidden state second hidden state combine hidden state T -T- T
(2]
\ A y X \ 7 \ Y
) add
§ % \ \ \
5=
£s — > > > > el N
o ©
83 \ \ \ \ \ 3x 3 conv 2 x 2 maxpool
. 7 7 7 7 A
\ \ \ \ \ 7/
e - - 4 ~

{ repeat B times |

I I
: hidden layer A : : hidden layer B :
I
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Deep Reinforcement Learning

Environment

State

Reward @

Action

Deep Reinforcement Learning Competition

——

Lex Fridman ‘f //'7;‘\\\
it

—
|
|

69.38 nph = ! \ ‘
| | \

|

|

/

\\ \:;
2,276 out of 22,687 e

b
|
|
|
|

5\‘1' f 1,871 \
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Toward Artificial General Intelligence

Transfer Learning

Hyperparameter Optimization

Architecture Search

Meta Learning

Knowledge
How much | think |
know (%)
How much | actually know
Expertise
The “m a?;ex ert” The
“I know nothing” phase : P i “l know nothing” phase
phase H
Beginner Hazard Expert
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Thank You

Website:
deeplearning.mit.edu

* Videos and slides will be posted online
* Code will be posted on GitHub
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